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ABSTRACT

Surface wind speeds in tropical cyclones are important for defining current intensity and intensification.

Traditionally, airborne observations provide the best information about the surface wind speeds, with the

Stepped Frequency Microwave Radiometer (SFMR) providing a key role in obtaining such data. However,

the flight patterns conducted by hurricane hunter aircraft are limited in their azimuthal coverage of the

surfacewind field, resulting in an undersampling of thewind field and consequent underestimation of the peak

10-m wind speed. A previous study provided quantitative estimates of the average underestimate for a very

strong hurricane. However, no broader guidance on applying a correction based on undersampling has been

presented in detail. To accomplish this task, a modified observing system simulation experiment with five

hurricane simulations is used to perform a statistical evaluation of the peak wind speed underestimate over

different stages of the tropical cyclone life cycle. Analysis of numerous simulated flights highlights prominent

relationships between wind speed undersampling and storm size, where size is defined by the radius of

maximum wind speed (RMW). For example, an intense hurricane with small RMW needs negligible cor-

rection, while a large-RMW tropical storm requires a 16%–19% change. A lookup table of undersampling

correction factors as a function of peak SFMRwind speed and RMW is provided to assist the tropical cyclone

operations community. Implications for hurricane best track intensity estimates are also discussed using real

data from past Atlantic hurricane seasons.

1. Introduction

Invaluable strides toward improving tropical cyclone

(TC) track and intensity forecasts have beenmade over the

past few decades. While track forecasts have steadily im-

proved (Gall et al. 2013), intensity forecasts are improving

more slowly due to deficiencies in the understanding of

physical processes in TCs and the ability to model those

processes in numerical simulations (DeMaria et al. 2014).

As part of this desire to understand the deficiencies in TC

forecasting, data assimilation systems (i.e., Aksoy et al.

2012, 2013) are designed to incorporate various obser-

vations from satellite-, aircraft-, ocean-, and land-based

instruments, often evaluating the effects on the predicted

TC track, intensity, three-dimensional structure, and sur-

rounding environment by including or omitting certain

observations (Aberson et al. 2015; Christophersen et al.

2017). Assimilation and prediction systems rely heavily on

airborne and satellite data, and sophisticated satellite in-

struments indicate specific details about precipitation,wind,

or thermodynamic structure in all TC basins. Determining

direct TC intensity estimates, however, remains a short-

coming of spaceborne platforms that struggle to identify

small-scale features related to storm intensity. Therefore,

in situ and remote sensing observations from hurricane-

penetrating aircraft remain the most accurate and prefer-

able source of intensity information for forecasters.

Operational forecast centers report TC intensity based

on estimates of the maximum 1- or 10-min average wind

speed at 10-m height above the surface (OFCM 2012) in

the form of a ‘‘best track’’ estimate (Jarvinen et al. 1984).

The best track intensities are derived from multiple data
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sources over a 6-h window at synoptic times (Landsea and

Franklin 2013). There is an inherent inability to observe this

metric or resolve it in numerical simulations (Vukicevic

et al. 2014). There are also subjective influences on the

estimate that affect comparisons of observational or model

data to it. The uncertainty of this intensity measure is

5ms21 (Landsea andFranklin 2013),which is slightly lower

for weak tropical storms and higher for strong hurricanes.

Despite these caveats, the best track intensity is a reason-

able baseline value to assess the current strength of a TC. In

the absence of aircraft data, TC intensity is estimated from

the satellite technique developed by Dvorak (1975, 1984).

While the Dvorak method is extremely useful, it is known

to have larger errors for storms that reach category 4 or

higher intensity on the Saffir–Simpson hurricane wind scale

(Knaff et al. 2010; Cangialosi et al. 2015). Hurricane hunter

aircraft, however, are fitted with the Stepped Frequency

Microwave Radiometer (SFMR; Uhlhorn and Black 2003;

Uhlhorn et al. 2007; Klotz andUhlhorn 2014) that provides

surface wind speed and rain rate directly below the aircraft

flight track. Throughout this study, reference to the SFMR

surface wind speed is interpreted as a representative 10-m

wind speed. Despite the limited spatial coverage, the

SFMR is capable of providing reliable estimates of surface

wind speeds .10ms21. While the improvements to the

SFMR algorithm described by Klotz and Uhlhorn (2014)

reduced high biases at the low wind speeds in precipitation

(tropical storm winds), they were not completely removed.

This remaining high bias must be taken into consideration

when using SFMR data.

In a given storm, coverage of the full 10-m wind field by

the SFMR is sparse due to the design of the flight patterns

and small footprint. A previous study from Landsea et al.

(2004) also describes undersampling by dropsondes

(Franklin et al. 2003) and discusses use of a flight-level

wind speed reduction to obtain surface wind speed esti-

mates, where the surface wind speed is 80%–90% of the

flight-level wind speed (i.e., Powell and Black 1990).

Powell et al. (2009) wanted to revisit the premise of the

reduction factor because SFMRwinds had been collected

over multiple hurricane seasons and could be used to

develop more accurate comparisons. They performed an

analysis of the slope-dependent flight-level reduction

factor and developed several ways to estimate the maxi-

mum surface wind speed through linear regression tech-

niques. They concluded that the average reduction factor

was close to 83% with azimuthal variability and also de-

termined that the ‘‘90% rule’’ was biased high.While they

used a reliable set of SFMR winds, it remains that the

reported peakwind speed fromSFMRunderestimates the

true maximum surface wind speed. With reliance on air-

craft data that undersample a 10-m wind field, it is ex-

pected that the best track intensity will also underestimate

the 1-min peak wind within the wind field. To clarify, any

reference to undersampling refers to the ability (or lack

thereof) of an observing system to adequately sample a

TC wind field. An underestimate is a consequence of the

undersampling because the likelihood of observing the

absolute peak wind speed is statistically close to zero. To

quantify the underestimate, the best practice is to com-

pare observations to the spatially averaged wind speed

within a given time period rather than an estimate of the

absolute peak. Because Uhlhorn and Nolan (2012) uti-

lized this technique, it is known that the SFMR un-

derestimates the 1-min and 6-h (i.e., best track) peak wind

speed. However, application of any adjustment of surface

wind speeds in the best track due to undersampling of the

wind field is currently subjective and lacks formal guid-

ance. Use of the terminology for peak wind speeds in the

remainder of this article will refer to the 1-min average

wind speed unless otherwise specified.

From the variety of sampling patterns or inconsistencies

in data, it is somewhat difficult to provide guidance on a

subject that has not been objectively detailed. One way to

evaluate the strategies employed in current operational

aircraft missions is to perform a modified version of an

observing system simulation experiment (OSSE; Arnold

and Dey 1986; Atlas 1997). In this type of experiment, a

current or potential observing system can be simulated

in a numerical model for the purposes of validating sam-

pling strategies, model performance, and data assimilation

techniques. The latter two of these examples are beyond

the scope of this work, and our main focus is to evaluate

the existing hurricane hunter sampling strategies.

Uhlhorn and Nolan (2012) employed an OSSE-like

experiment to quantify the maximum wind speed un-

derestimate from hypothetical SFMR observations.

Using a simulation of Hurricane Isabel from the 2003

Atlantic season when it was intense and symmetric

(Nolan et al. 2009a,b), they discovered that under the

constraints of the typical operational flight patterns, one

should expect, on average, a 7%–10% peak 1-min wind

speed underestimate. For their most favorable sampling

patterns, the wind speed underestimate decreased to

;3.5%–4%, but there was only a one-in-eight chance

for this to occur. Distributions of the peak winds within

the eyewall of Hurricane Isabel indicate that 95% of

these wind speeds are ,90% of the peak 1-min wind.

A follow-up study from Nolan et al. (2014) employed a

similar type of experiment by first defining a ‘‘perfect’’

observing system as a dense grid of surface anemometers.

For the most common case of a single surface measure-

ment in a ‘‘perfect’’ location (i.e., a direct hit by the right-

front eyewall), themaximumobservedwind speed by such

an instrument underestimates the true maximum in the

same time interval typically by 5%–10%, but also by as
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much as 18% during different stages of TC development.

Figure 8 from their study shows that by adding ideally

placed anemometers in the direct path of the peak winds,

one or two anemometers observe peak wind speeds close

to the mean or best track winds. However, this figure also

indicates that surface anemometers will underestimate the

peak wind speeds by at least 5kt (1kt’ 0.5144ms21) due

to the model’s inability to resolve small-scale turbulent

features as they found by comparison to real observations

from tower data.

While Nolan et al. (2014) present some compelling re-

sults, duplicating their anemometer network in reality is

not feasible, which increases the importance of quantifying

the underestimates expected from aircraft observing sys-

tems. The concepts of Uhlhorn and Nolan (2012) for a

specific storm structure thus lead naturally to the question

of how the SFMR underestimate varies at different stages

of TC development, from changes in vortex structure or

intensity, or from changes and improvements to the nu-

merical simulations used in a modified OSSE. In terms of

storm structure, it is possible to have variations in storm

size or azimuthal and radial symmetry across TCs of sim-

ilar intensity. These differences affect the determination of

an azimuthally averaged radius of maximum wind speed

(RMW) and also have an impact on the likelihood of

sampling the peak surface winds. In addition, improve-

ments to physics and boundary layer parameterizations

along with higher-resolution grids allow models to better

replicate surface wind speeds and their variability through

the two-dimensional horizontal wind field and provide a

better medium to perform the modified OSSE experi-

ments. Therefore, the purpose of this study is twofold:

1) evaluate and quantify the underestimate of the peak

surface wind speed from SFMR-like observations over

the TC life cycle using a trusted, high-resolution model

framework; and 2) provide a more objective guide for

applying a correction to the peak underestimated wind

speed from SFMR. The sections of this article are as fol-

lows. The second section briefly discusses the model sim-

ulation data used for what is referred to throughout as the

SFMR OSSE, and the third section describes the meth-

odology and various experiments performed. The fourth

section describes the experiment results, while the fifth

section discusses application techniques with real obser-

vations. The final section provides some conclusions of the

study with mention of ongoing or future related work.

2. Simulation and data description

a. Model selection and details

The goals of the current study are to document and

quantify the variation in the surface wind undersampling

over the TC life cycle, from initial development,

intensification, maturation, and weakening phases. Each

of this study’s predecessors (Uhlhorn and Nolan 2012;

Nolan et al. 2014) performed observation experiments

using the output from a single numerical simulation of a

hurricane. To expand the range of possible hurricane

‘‘states’’ as represented by their varying measures of

size, intensity, and asymmetry, this study uses model

outputs from five different simulations, most of which

capture several stages of the hurricane life cycle. These

are the hurricane nature run 1 (HNR1; Nolan et al.

2013), hurricane nature run 2 (HNR2; Nolan and

Mattocks 2014), a simulation of Hurricane Bill (2009),

and two idealized simulations of hurricanes with mean

flow and wind shear. The two idealized simulations will

be referred to as Ideal3 and Ideal5 for reasons described

in appendix A. These simulations were chosen or con-

structed to be as similar as possible in terms of model,

resolution, and physical parameterizations. Specifically,

all five use the same grid spacing, vertical levels, and

parameterizations of physical processes as HNR1. Fur-

ther discussion of the rationale for using these simula-

tions and additional details are provided in appendix A.

Figure 1 provides the tracks for the respective model

simulations, with the bold portion of the track coinciding

with the selection used for the SFMR OSSE, which will

be discussed in a subsequent section. Because of the

substantial interaction with land in HNR2, only the

period when it is between Cuba and south Florida

is used.

b. Storm characteristics

To evaluate the undersampling of SFMR-like ob-

servations, it is important to consider multiple char-

acteristics of the simulated storms. These parameters

include peak wind speed, RMW, and asymmetric wind

structure. Regarding the peak wind speed, it is not

useful to rely on the instantaneous model output for

the peak value because it will overestimate values

typically used by operational centers to classify TC

intensity (1- or 10-min averages). In an effort to convert

the instantaneous wind speeds to these time-averaged

values, Uhlhorn and Nolan (2012) loosely use the

concept of a gust factor (Gi,T), defined by the peak

instantaneous wind speed in a given time window di-

vided by the wind speed averaged over the 1- or 10-min

period surrounding the maximum value. Traditional gust

factors as described by Vickery and Skerlj (2005) are not

generally reproducible in a model simulation due to res-

olution constraints. Uhlhorn and Nolan (2012) found

their gust factors to be wind speed dependent and, for the

1-min conversion, ;1%–2% less than the instantaneous

value at wind speeds .60ms21. The 10-min conversion

JANUARY 2019 KLOTZ AND NOLAN 249



experiences a 2% change at 50ms21 and 5%–12%above

60ms21. For this current study, the same conversion

factors are used to provide time averaging for the model

10-m wind speed. The equations are as follows from

Uhlhorn and Nolan (2012):

G
i,1
5 11 2:53 10210(U

i
2 23)4:7, (1)

and

G
i,10

5 11 2:13 10211U5:3
i , (2)

where Gi,1 and Gi,10 are the 1- and 10-min conversion

factors, respectively, andUi is the instantaneous (i) peak

10-m wind speed (i.e., direct model wind speed output)

at each grid point. To obtain the averaged wind speed,

divide Ui by Gi,T.

Operational assessments of intensity generally occur at

synoptic times (i.e., 0000, 0600, 1200, and 1800 UTC), and

data are considered from a variety of observational

platforms. These wind speeds, which are evaluated

over a 6-h window surrounding the synoptic time

(Landsea and Franklin 2013), are initially reported in a

‘‘working best track’’ and are later applied to the of-

ficial best track database after verification in a post-

season analysis (Jarvinen et al. 1984; Landsea et al.

2004; Landsea and Franklin 2013). To evaluate the

undersampling relative to the best track wind speed,

a running average of the peak 1-min winds over a

6-h period is calculated similarly to Uhlhorn and

Nolan (2012). Figure 2 provides the time series of the

peak 1-min and 6-h running mean wind speeds (Vmax)

for each model simulation, with the bold lines corre-

sponding to the portion used for the SFMR OSSE.

Storm size and structure are also vital characteristics to

consider for impacts on SFMR peak wind speed un-

derestimates. Figure 3 shows examples of instantaneous

10-m wind fields from the various simulations and high-

lights the structural range obtained throughout themodel

data sample. The top three panels are snapshots from

HNR1 showing a disorganized tropical storm, a strong

hurricane with a large wind field, and a slowly weakening

hurricane with an expanding wind field. The lower-left

panel (from HNR2) displays the effects from land in-

teraction, while the lower-middle and lower-right panels

are from Bill and Ideal5, respectively, and indicate in-

tense hurricanes with small RMW.

These wind fields in Fig. 3 show a variety of interesting

wind structures with spatial scales ranging from 4 to

20km. Because there is currently no way to instanta-

neously observe the surface wind field of a hurricane to

the required spatial resolution, it is difficult to know

whether these structures are realistic. The localized

wind maxima in the eyewalls compare reasonably well

to the larger, coherent structures observed by land-

based and airborne radar and in situ measurements

(Aberson et al. 2006; Marks et al. 2008; Hendricks et al.

2012). Outside of the eyewall, some of the features

are caused by convective downdrafts, whereas others

appear to be wind streaks associated with boundary

FIG. 1. Storm tracks for the five TC simulations are shown. The markers indicate the

position at 0000 UTC on a particular date during the simulation. Thicker lines on the tracks

highlight the portion of the simulation used in the current study. The tracks of the two

idealized storms are included for comparison, with their initial latitudes on this map equal to

the latitudes with Coriolis parameters equal to their f-plane values. The initial longitudes

are arbitrary.
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layer rolls that are likely underresolved. In some cases

(e.g., Figs. 3b,c), wind streaks are at an outward angle,

compared to the direction of the low-level flow. Direct

observations of wind streaks by portable Doppler radar

find them generally to be parallel to the local wind or

oriented at an inward angle (Wurman and Winslow

1998; Lorsolo et al. 2008; Kosiba and Wurman 2014).

However, these observations were all taken over or very

close to land, which can significantly change the low-level

wind profile and affects the preferred orientations of the

bands (Nolan 2005). Large-eddy simulations of a hurri-

cane by Green and Zhang (2015) also show outward-

oriented wind streaks even as the resolution is decreased

to 111m. Fortunately, the wind streaks seen in the simu-

lations only appearwhen the simulated storms are intense,

and during this time, the peak winds always occur in the

eyewall. Therefore, the wind streaks outside the inner

core do not contribute to the undersampling effects that

will be shown later. This point, as well as a comparison of

the wind fields using different horizontal and vertical dif-

fusion schemes, is further discussed in appendix B.

Highlighting the differences between a minimal and

an intense hurricane, Fig. 4 shows simulated SFMR

profiles through the wind fields from Figs. 3b, 3d, and 3f.

The simulated flight paths for each of these profiles are

southwest to northeast, west to east, and north to south,

respectively. Paths were chosen based on the location of

the maximum model surface wind speed during the sim-

ulated flight. The profile forHNR2 indicates the expected

large storm with gradually decreasing wind speeds out-

ward from the center. The comparison ofHNR1 to Ideal5

shows that hurricanes that are of similar strength can have

vastly different radial profiles of wind speed and overall

wind structure. The wind speed drops sharply beyond the

maximum in Ideal5, while HNR1 has a more gradual

decrease. Also evident is the symmetry difference be-

tween HNR1 and Ideal5, where for the former, the peak

wind speeds on the two sides of the eye vary by 15ms21,

while the latter vary by only 5ms21.

Size and symmetry are quantifiable terms and are

conveyed by the RMW and an asymmetry factor. The

size term here is not necessarily representative of the full

vortex size, but a larger RMW tends to correspond to a

larger vortex. The extent of the vortex is often defined

by the radius of minimal tropical storm force winds

(i.e., .17ms21; Chavas and Emanuel 2010), but this

definition of size is less relevant to the present study. To

determine the RMW from the two-dimensional surface

winds, azimuthally averaged wind speeds are produced,

and the location of the maximum wind indicates the

RMW. The asymmetry of the wind field is determined

by first taking the azimuthal-mean wind speed within

612 km of the RMW and then calculating the average

Fourier decomposed wavenumber 1 and 2 magnitude

FIG. 2. The 1-min mean and 6-h mean

intensity (Vmax) time series are shown for

each of the five model simulations. The

thick line in each panel corresponds to

the track section highlighted in Fig. 1.

The 0000 UTC time on a particular date

is noted along the top axis, while the

forecast hour is noted in the bottom axis.

JANUARY 2019 KLOTZ AND NOLAN 251



within the same annulus. The asymmetry factor is then

calculated using the following equation:

A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21 1 f 22

p
V

m

, (3)

where f1 and f2 are the amplitudes of the first two

wavenumbers of the Fourier decomposition, and Vm is

the mean wind speed within the annulus around the

RMW. Figure 5 shows the RMW and asymmetry factor

A for the five simulations in a similar manner to Fig. 2.

As expected, decreasing RMW is generally correlated

with decreasing asymmetry (i.e., lower A), but the dif-

ference between HNR1 and Ideal5 depicted in Fig. 4 is

muted here due to the azimuthal averaging.

It is apparent that there is a connection between

RMW and intensity, and theoretical studies from

Shapiro and Willoughby (1982) and Willoughby et al.

(1982) suggest that storm intensification and RMW

contraction occur at the same time. Kimball and

Mulekar (2004) use the existing extended best track

dataset to examine storm size changes associated with

intensification, and their results tend to support the

ideas of the two theoretical studies above. However,

Vigh (2010) uses a combination of best track and air-

craft flight-level RMW to suggest that substantial

contraction of the RMW occurs prior to eye formation,

and storms that continue to intensify tend to see, at

most, a slow contraction of the RMW. Stern et al.

(2015) evaluate the contraction principle with idealized

TC simulations in WRF and develop a method for

determining the rate of RMW change. Their model

results indicate that shrinking of the RMW slows after

rapid intensification until eventually remaining steady

for the remainder of the simulation even as intensity

continues to increase. Using an observational flight-

level dataset (Vigh et al. 2012), Stern et al. (2015) show

in their Fig. 12 that RMW contraction is greatest at

the initial stages of intensification, while significantly

slowing at wind speeds exceeding 65 kt. In contrast, the

RMW expands during secondary eyewall formation

and eyewall replacement cycles (Willoughby et al.

1982; Black and Willoughby 1992), acting to enlarge

the vortex and slow intensification rates.

FIG. 3. Examples of the 10-m wind field (m s21) are shown for various stages of the TC life cycle. (a)–(c) The tropical storm, intense

hurricane, and slowly weakening hurricane with expanding wind field are shown from HNR1. (d) An example of land interaction from

HNR2, and strong hurricanes with small RMW from (e) Bill and (f) Ideal5. The peak wind speed Vmax and RMW are indicated in

each panel.

252 MONTHLY WEATHER REV IEW VOLUME 147



From the five simulations in the current study, the

10-m RMW and peak 1-min mean model wind speed

are compared. For the entire intensity spectrum, RMW

and intensity have a moderate negative correlation

with a correlation coefficient of20.7. Once wind speed

exceeds 40m s21, this correlation magnitude increases

to 20.4. The better correlation associated with weaker

wind speed is a consequence of disorganized systems

consolidating as they intensify, which is most often

associated with a decreasing RMW in the earlier stages.

After consolidation, RMW has less of a connection

with the overall intensity, in agreement with Stern et al.

(2015) and Vigh (2010).

c. Real SFMR data applications

The simulated storms provide the best opportunity

to determine a peak surface wind speed un-

derestimate from the SFMR. Given the fact that

SFMR winds are simulated in this study, it is impor-

tant to remind the reader of the reliability of these

winds. Uhlhorn and Nolan (2012) took a set of real

SFMR observations and computed histograms of the

peak wind speed anomaly that represented the dif-

ference between the sum of the Fourier decomposed

wavenumber 0 and 1 value from the observed peak

wind along a flight radial. The same procedure was

completed in their simulated flights. They discovered

the observed and simulated winds were almost iden-

tical to each other for single figure-four flight patterns,

which are discussed in the next section. For rotated

figure-four patterns that doubled the storm sampling,

the simulated peak winds were distributed over a

narrower band. Because of this difference, they

developed a ‘‘calibration’’ of the simulated winds

using histogrammatching and showed that despite the

difference with the rotated figure-four pattern, the

FIG. 5. As in Fig. 2, but for the time

series of radius of maximum 10-m wind

speed (blue line) and the asymmetry pa-

rameter (red line). These panels only

show the portion of the simulation rep-

resented by the thick line in Fig. 2.

FIG. 4. Radial profiles of simulated surface wind speeds for the

model examples in Figs. 3b, 3d, and 3f. The respective profiles are

produced from transects from southwest to northeast, west to east,

and north to south.
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simulated winds represented SFMR observations

quite well.

Because the simulated winds are representative of

real observations, the simulation results can be used in

real cases to investigate the impacts of applying some

amount of correction due to undersampling of the wind

field. A random sample of cases from 1998 to 2016 that

encapsulate the flight patterns recreated in the simu-

lated flights is determined. Of the hundreds of missions

operated by NOAA’s Aircraft Operations Center in

partnership with the Hurricane Research Division

during their annual field program (Rogers et al. 2013,

and references therein), 141 cases were selected for the

validation dataset. The sample is separated by best

track intensity as evenly as possible, with 55 tropical

storms, 51 category 1 and 2 hurricanes, and 35 category

3 or higher hurricanes. For each case, the flight pattern,

best track maximum wind speed, peak SFMR 1-min

wind speed, and the RMW are recorded. The impor-

tance of these values will be discussed in a subsequent

section.

3. Methodology and experiment design

a. Simulating SFMR observations

The methodology for simulating SFMR wind speeds

from hurricane-penetrating aircraft is documented in

detail by Uhlhorn and Nolan (2012), but a summary is

given here. To adequately quantify the undersampling,

flight patterns flown in operational missions are repli-

cated in the SFMR OSSE. Traditional patterns include a

single figure-four (alpha) pattern, a single butterfly

pattern, and rotated or repeated figure-four patterns.

Rotated figure-four patterns are operated in a manner

such that eight equally spaced (azimuthally) radial

profiles of the vortex are sampled, while the repeated

figure-four samples the same four radials twice. Figure 6

provides examples of these flight patterns, where the un-

derlying surface wind field (added here for illustration) is

from HNR1 at 0000 UTC 4 August 2005. Each panel in-

dicates that the successive patterns increase the coverage

of the storm, where a single figure-four has minimal cov-

erage and a rotated figure-four has maximum coverage

allowed by operational constraints. The time series of

simulated SFMR wind speed along the flight track is pro-

vided in the lower portion of each panel.

The radial distance of each flight transect is 196 km

(;106 nautical miles; 1 n mi 5 1.852 km) from the cen-

ter. The aircraft usually flies at 3-km altitude at a speed

of 230 kt, and the typical flight durations for the single

figure-four, single butterfly, repeated figure-four, and

rotated figure-four patterns are 2.5, 3.4, 5.6, and 5.3 h,

respectively. The repeated figure-four has a longer

duration than the rotated version because of the

downwind rotation of 908 relative to the end of the

initial figure-four. The rotated figure-four requires

only a 458 rotation at this same point in the flight. A

separate pattern not included in Fig. 6 is introduced

here, referred to as a resampled figure-four. The re-

sampled figure-four is similar to a single figure-four but

adds two additional peak wind observations along the

azimuth closest to the right-front quadrant in a storm

motion–relative sense. Figure 7 provides a schematic

of the resampled figure-four pattern and highlights the

location resampled by the aircraft. The additional

sampling extends;100 km from the center (i.e., half of

the full radial transect) in an effort to capture any

changes near the peak wind speed that may occur

over a short time period.

The operational SFMR does not observe a single point

beneath the aircraft flight track, but rather receives a

signal over a;1.3–1.5-km diameter footprint at nadir. Six

C-band brightness temperatures are reported at a rate of

1Hz, and it typically takes 10 s to obtain a set of new

brightness temperatures (Uhlhorn et al. 2007). Based on

the aircraft speed, there are overlaps between successive

observations; therefore, a 10-s average is usually calculated

to obtain a 1-minwind speed (Powell et al. 1991). Thewind

speed and column-averaged rain rate are then calculated

from an inversion scheme within the SFMR geophysical

model function. To replicate SFMR wind speeds for the

SFMROSSE, it is not necessary to apply the geophysical

model function, but only the footprint size and time

stepping techniques. Uhlhorn andNolan (2012) describe

using the half-power beamwidth and the 1% of peak

normalized power as metrics for determining the foot-

print size, where any grid points that occur outside the

1% power threshold are excluded. As noted by Uhlhorn

andNolan (2012), the 1%power footprint size over 1 s of

the flight would encapsulate three to five grid points,

which are weighted based on distance to the aircraft. To

obtain SFMR-like observations every 10 s for the 1-min

mean wind estimate, the phase-preserving filter that in-

corporates the temporal and spatial weighting scheme

includes between seven and nine model grid points, with

points closest to the aircraft getting the highest consid-

eration in the wind calculation. For a single figure-four

pattern, 888 simulated SFMR wind speed observa-

tions are generated through the spatial and temporal

weighting of the winds along the flight track over 30

model time steps (25 for HNR1).

b. Experiments and evaluation techniques

To test the SFMR underestimate of TC peak surface

wind speeds, flight patterns are conducted at eight initial
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azimuths starting at 08 and rotated every 458 around the

circle for each subsequent flight. Three-hour initial flight

time separation is used to increase data in the sample. At

each initial time, there are eight simulated flights for each

pattern described previously, such that each flight starts at

one of the eight azimuths described above. Over each 24-h

period, 64 simulated flights are produced with flight times

corresponding to the respective pattern chosen and within

the respective model storm. Table 1 provides the total

number of flights conducted and total flight time within

each model storm simulation. From each flight, the peak

SFMR-like wind speed and the peak instantaneous, 1-min,

10-min, and 6-h mean model wind speeds are obtained.

The eight maximum SFMR wind speeds per flight time

period are averaged to obtain a mean value that is then

compared to the respective model maximum to determine

the underestimate. The minimum underestimate and the

95% confidence intervals are also obtained from the sim-

ulated SFMR peak wind speeds.

4. Experiment results

a. Single figure-four and single butterfly

The basic patterns flown include the single figure-four

and single butterfly. The underestimate is first evaluated

by comparing the mean SFMR peak winds to the 1-min

mean model maximum within the flight time window.

Additional comparisons between the SFMR and 10-min

model peak winds [using the conversion factor in

Eq. (2)] and the 1-min mean SFMR and 6-h best track

peak winds are computed. The mean underestimate

values associated with these comparisons are provided

in Table 2 in wind speed and percentage units for the five

FIG. 6. Sample flight patterns used in this study are shown for the (a) single figure-four, (b) single butterfly,

(c) repeated figure-four, and (d) rotated figure-four. The two arrows indicate the initial inbound and final outbound

locations of each pattern. The underlying contour plots are taken from a single output time of HNR1 (0000 UTC 4

Aug 2005) to indicate the extent of the full wind field sampled by each pattern. The lower inset of each panel shows

the time series of 10-m wind speed (m s21) that would be sampled directly beneath the aircraft. This time series is

not sampled over the single wind field, but rather the temporal and spatial model output, as discussed in the text.
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simulated storms. These averages are computed over the

full duration of the simulation period designated pre-

viously. For the single figure-four results, the 10-min

mean underestimate is within 1% of the 1-min mean

value for storms that have a higher frequency of peak

wind speeds ,60m s21. The 10-min mean values are

mostly impacted above this wind speed threshold;

therefore, Hurricane Bill and Ideal5 have a much lower

underestimate overall, compared to the 1-min mean.

The underestimate of the 6-h mean relative to the 1-min

value is slightly larger. Comparing the 1-min mean

values among all simulations for the single figure-four

pattern also indicates that there is a connection between

the strength and organization of the storm and the

mean underestimate. The results from Bill, compared to

HNR2, quantify this idea in that a weak and disorganized

storm has a much higher underestimate (16.1%) than a

storm that is strong and well organized (4.8%).

The single butterfly results in Table 2 indicate similar

trends among the three time-averaging methods as seen

with the single figure-four. Because this flight pattern

samples the hurricane eyewall one additional time,

compared to the single figure-four, one might expect

lower underestimates, compared to the single figure-four

pattern. A lower underestimate indicates that the differ-

ence between the overall model peak and SFMR peak

wind speed is reduced (i.e., percentages decrease), and an

increase in the underestimate indicates a rise in this dif-

ference (i.e., percentages increase). The expectation of

lower underestimates is mostly true, where the butterfly

mean underestimates are between 0.2% and 1.0% lower

for all model simulations, with the exception ofHurricane

Bill. The additional passes through the maximum wind

bands increase the underestimate by as much as 2.2% for

the 6-h mean value. These differences are not statistically

significant at 95% confidence.

b. Repeated and rotated figure-four

The results from the longer-duration flight patterns,

which include the repeated and rotated figure-four, are

also provided in Table 2. For the rotated figure-four

flights, there is less of a difference among underesti-

mates across the five simulated storms, compared to the

single figure-four results. Looking at the 1-min mean

winds, the single figure-four flights have a difference of

11.3% between HNR2 and Hurricane Bill, while the

rotated figure-four has a difference of 8.8%. The con-

jecture here is that by sampling more of the storm, it is

possible to obtain SFMR-like wind speeds closer to the

peak value. This idea holds true when evaluating the

repeated figure-four results because there is less cover-

age of the storm, and the largest difference across all

storms is 1.4% higher than the rotated figure-four

overall. The underestimates for the rotated figure-four

FIG. 7. A schematic diagram of the resampled figure-four pattern

is shown. The blue arrow indicates the direction of storm motion,

and the red curve signifies the traditional location of the peak

wind speed.

TABLE 1. The number of flights is listed as a function of simulated storm. Also included is the total flight time (in h) for each type of

pattern within each model. Flight times for one flight in each of the noted sampling patterns are 2.47 (single figure-four), 3.43 (single

butterfly), 5.58 (repeated figure-four), 5.28 (rotated figure-four), and 3.0 h (resampled figure-four).

No. of flights

Total simulated flight time (h)

Single

figure-four

Single

butterfly

Repeated

figure-four

Rotated

figure-four

Resampled

figure-four Total

HNR1 584 1442.5 2003.1 3258.7 3083.5 1752.0 11 539.8

HNR2 88 217.4 301.8 491.0 464.6 264.0 1738.8

Bill 232 573.0 795.8 1294.6 1225.0 696.0 4584.4

Ideal: Cat 5 648 1600.6 2222.6 3615.8 3421.4 1944.0 12 804.4

Ideal: Cat 3 648 1600.6 2222.6 3615.8 3421.4 1944.0 12 804.4

Total 2200 5434.1 7545.9 12 275.9 11 615.9 6600.0 43 471.8
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in HNR1, Ideal5, and Ideal3 are statistically significantly

lower (at 95% confidence) than single figure-four un-

derestimates. The same significance metric is only true

for the repeated figure-four within HNR1. This result

suggests that sampling over a variety of storm intensities

and increasing azimuthal coverage results in a reduced

underestimate from SFMR overall.

c. Resampled single figure-four

Occasionally, it is not possible to conduct a repeated

or rotated figure-four pattern due to time constraints.

An interesting compromise is presented here to sample

the maximum wind region more than a typical single

figure-four pattern while only adding about 30min to the

flight. As shown in Table 2 for the 1-min mean values,

the underestimate from the resampled figure-four is

1%–1.5% lower than the single figure-four for HNR1

and the two idealized simulations. Hurricane Bill

shows a negligible difference between the patterns,

while HNR2 is degraded by 1.3%, compared to the

single figure-four. Similar trends are found with the

other time-averaging periods. Because the storm in

HNR2 is disorganized for a long portion of the simula-

tion, the results here suggest that the resampled figure-

four pattern is not useful for the early stage tropical

cyclogenesis or for storms with poorly defined wind

structures. The slight improvement overall shows the

resampled figure-four could serve as a useful alternative

option for well-defined TCs in time-constrained situa-

tions if longer-duration patterns are not possible.

d. Life cycle stages

Single-storm averages discussed above are useful for

pointing out differences in pattern types, but it is not

clear how much they vary in terms of changes between

different TC life cycle stages. Figure 8 shows the time

series of wind speeds for HNR1 and the mean 1-min

underestimate values with associated 95% confidence

intervals at each flight time period for the single figure-

four pattern. Portions of the time series are separated

into five stages of TC evolution: tropical storm (stage I),

rapid intensification (stage II), recently intensified (stage

III), steady-state mature (stage IV), and recurving and

weakening (stage V). Themean SFMR peak wind speeds

never exceed the model maximum, but several time

periods have their minimum underestimate (green tri-

angle) within close proximity to the 6-h best trackmean

model wind speed. Table 3 provides a brief description

of each stage and periods used from HNR1 and Ideal5.

Figure 9 shows box-and-whisker plots of these five life

cycle stages using data from HNR1 and Ideal5 and for

the five complete simulations previously presented.

The left panel is representative of the results in Table 2.T
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It is worth mentioning the noticeable influence of

storm size and structure on the likelihood of ob-

serving peak wind speeds from SFMR. The narrower

range of the Hurricane Bill and HNR2 underesti-

mates is a consequence of the relatively constant

storm types depicted in their limited simulation pe-

riods. For the other three simulations that sample

more of the TC life cycle, the interquartile range is

much larger due to the changes in size and structure

throughout each simulation.

Stage I has a higher median underestimate than stages

II–V for both single and rotated figure-four patterns.

The lowest underestimates occur in stages II and III,

where the storm is beginning to contract and intensify

to a small RMW intense TC (see Fig. 5). The largest

differences between the single and rotated figure-four

patterns occur in stages I and II. At these points in the

model simulations, the TCs experience large changes in

storm structure, and the rotated figure-four is able to

capture those changes better than the single figure-four.

Despite the higher variability in the rotated figure-four

in stages I and II, its median underestimate is 3.5%–4%

less than the single figure-four pattern. In stages III–V,

there is less variability in the underestimate, as indi-

cated by the interquartile ranges, but the median un-

derestimates increase as the storm gets larger. In these

final three stages, the median of the rotated figure-four

pattern is ;2% less than the single figure-four. These

results convey that the rotated figure-four pattern

will give a better estimate of the peak wind and sig-

nificantly improves the underestimate during intensifi-

cation periods.

Figure 10 provides similar information to Fig. 9 but

uses the 10-min mean underestimate values. In the dif-

ferent life cycle stages, the underestimates are .5%

lower for stages III and IV, compared to the 1-min

average for single figure-four flights. The difference

for rotated figure-four flights is closer to 5%–7%

lower when comparing the 10-min to the 1-min aver-

age. The overall result is that underestimates are re-

duced for 10-min winds, but the trends are similar to

those for the 1-min winds, where underestimates are

lowest in stages II and III before increasing again in

stages IV and V.

Similarly to Figs. 9 and 10, Fig. 11 displays the box-and-

whisker plots for the 6-h mean underestimates. The re-

sults for the different simulations are similar to the 1-min

results in Fig. 9, with nearly identical interquartile ranges.

However, there are some significant differences within

the life cycle stages between the two flight patterns and

with the 1-min mean results. For the flight pattern dif-

ferences, stage II has lower median underestimates by

3.1%, which is the largest difference of the five stages.

The other four stages have median differences of;1.5%.

When comparing against the 1-min averaging method,

stages I and II have the most significant differences. The

interquartile range for these periods is between 2% and

3% larger for the 6-h mean of the single figure-four pat-

tern with median values more than 1% higher for the 6-h

average. Stages III–V have differences of ;0.5% or less

between the averaging methods. These stark contrasts

are a result of the structural changes occurring in stages I

and II, where more variability in the peak model wind

speeds occurs in the 6-h average and causes an increase in

the underestimate.

e. Correlation to storm size and asymmetric structure

The results of the various simulations and periods of

development confirm that size and intensity are closely

linked to the underestimate. A question remains as to

which structure-related parameters would be most

useful for providing guidance during storm intensity

assessment periods. To obtain this information, six

variables related to storm intensity, size, and organi-

zation are correlated to the peak model wind speed.

Figure 12 provides these correlations for the RMW

near the surface and above the boundary layer (10-m

and 2-km heights), for the asymmetry parameter, for

the peak azimuthal-mean tangential wind speed near

the surface and above the boundary layer, and for the

peak wind speed near the surface. These calculations

are performed on the combined data of all simulations

in this study.

The asymmetry parameter (Fig. 12c) has a signifi-

cantly lower correlation with peak wind speed than all

other variables. The highest correlation occurs with the

peak SFMR wind speed (Fig. 12f), which is expected

based on the results in the previous subsections. Tan-

gential wind speeds near the surface are also highly

correlated (Fig. 12e), but because the SFMR only pro-

vides wind speed and not a wind vector, it is difficult to

obtain the tangential winds in an operational situation.

The near-surface RMW (Fig. 12b) is highly correlated to

the underestimate as well, and this result demonstrates

the need to include storm size in the assessment. The

reason the RMW and tangential wind speed above the

boundary layer are provided is to show that in the ab-

sence of SFMR or surface wind data, it is still possible to

obtain estimates about the underestimate. While these

two parameters are not discussed further, it is possible to

compute tangential wind speed at this altitude on the

operational aircraft because the wind data are provided

in vector form. Nonetheless, the near-surface peak

SFMR wind speed and RMW are the most useful for

relating storm structure and intensity to the peak wind

underestimate.
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5. Applications and comparisons to real cases

The results of this study so far convey that multiple

factors affect undersampling of the peak surface wind

speed by hurricane hunter aircraft. The most significant

are storm size, as determined byRMW, and themaximum

surface-measured wind speed. Development of a correc-

tion technique based on the storm size and intensity is the

most logical method to provide guidance on the un-

derestimate but requires some knowledge of the current

storm intensity. For the simulated flights, the peak wind

speed within the full field is known, making it simpler to

develop a new term called an undersampling rate,RU. For

example, a 6-h mean wind speed of 100kt associated with

an SFMR peak wind speed of 95kt suggests an under-

sampling rate of 5%. However, in operational practice,

the definition of the undersampling rate must be inverted

because the peak wind speed within the wind field is un-

known. We define a correction factor CU as a function of

the undersampling rates RU computed in this study:

C
U
5

�
104

1002R
U

�
2100, (4)

where CU and RU are in percent. From the example

above, Eq. (4) computes a correction factor of 5.3%

instead of the 5% suggested by the undersampling rate.

However, the differences become larger as RU in-

creases (e.g., for RU 5 15%, CU 5 17.6%). Table 4

provides the correction factors for all flight patterns,

with the exception of the resampled figure-four, asso-

ciated with the 6-h best track time average as a function

of storm size and intensity. Table 4 indicates that for a

large tropical storm, the best-case scenario is a 16%

correction when flying the rotated figure-four pattern.

A single figure-four pattern requires a 19% increase.

For a small major hurricane, all flight patterns would

require ,2% increase in the peak wind speed. These

low corrections are found in the small, nonmajor hur-

ricanes as well. The remaining combinations fall

somewhere between these extremes. An intensity es-

timate is necessary to determine RU, and for historical

cases, the best track value is available for this purpose.

In real-time situations, a best track intensity may not be

determined at the time of the flight, and the recom-

mendation here is to treat the SFMR peak wind speed

during a flight as the best estimate of the best track

equivalent peak wind speed. The correction factors in

Table 4 could then be applied to this value. Given that

the correction factors have a variability of 62%–3%

overall with additional variability on the order of

1%–2% from the best track averaging methods, these

values are meant to stand as guidelines to be applied

at the discretion of the user.

Examining real observations will help visualize how

these corrections could be applied. One example is

taken from the 2 September NOAA P-3 mission into

Hurricane Earl during the 2010 Atlantic hurricane

season. Figure 13 provides the flight track from the

NOAA P-3 mission overlaid on the best track position

and precipitation coverage from the lower fuselage

radar (Marks 1985). Radial profiles of SFMR wind

speeds are provided as well. The observed peak wind

speed from SFMR during the flight was 87 kt, and the

best track intensity was 90 kt. The undersampling rate

and subsequent correction factor are 3.3% and 3.4%,

respectively. A rotated figure-four pattern was flown

for this category 2 hurricane with RMW of 27.5 n mi

(51 km), and Table 4 suggests a correction factor of 8%.

Applying this correction factor to the SFMR peak wind

speed yields a new intensity estimate of 94 6 3 kt.

Airborne data are often given more weight in the best

track assessment; therefore, it is not surprising that the

best track and maximum SFMR wind speed are similar

here for that reason. The SFMR underestimates the

peak 1-min wind speed at varying magnitudes, and in

conjunction, best track estimates dependent on SFMR

FIG. 8. The time series ofHNR1 for the timeperiod indicated inFig. 3

is shown.The thin, black line indicates themaximum1-min-average10-m

wind speed from the model field, and the red line indicates the 6-h av-

erage from the model, similar to a best track estimate. The bluemarkers

are the average maximum surface wind speed obtained from the eight

simulated single figure-four flight tracks with the error bars indicating the

95% confidence intervals. The green marker is the maximum aircraft

wind speedobtainedwithin the simulatedflight timewindow.The groups

labeledwith I, II, III, IV, andVcorrespond to thedisorganized,RI, small-

mature, large and steady, and recurving phases of the TC life cycle.
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will likely underestimate the unobserved TC maximum

1-min wind (full field). The uncertainty of the best track

intensity accounts for some of the low estimate relative to

the corrected intensity of 94kt, but a more useful method

might be to incorporate knowledge of the SFMR un-

derestimate into the formulation of the best track value,

as the Hurricane Earl example suggests.

It is possible to performa statistical analysis of thismetric

using the full set of real cases mentioned in section 2c.

For each case, the flight pattern, RMW, and intensity are

obtained, and the underestimate correction is assigned.

Figure 14 provides joint histograms of the peak wind

speed difference as a function of best track intensity. The

results effectively show the histogram of the peak wind

speed difference for each best track bin (every 15kt),

where themaximumprobability is denotedwith the black

marker and 95% confidence interval. Note that there are

few cases in this sample data that have peak wind

speeds .135kt, and the results within that bin are not as

meaningful. For this analysis, the best track intensity is

treated as an estimate of the wind speed for the full wind

field despite the fact that in reality it is not. In Fig. 14a, the

difference in peak wind speed (i.e., DVmax 5 Vmax,BT 2
Vmax,sfmr) is generally in the range of 0–10kt, with the

TABLE 3. A brief description of the characteristics of each life cycle stage is provided along with the portion of HNR1 and Ideal5 used for

the statistical evaluation of the peak wind speed underestimate.

Stage Description Model period

I Tropical storm: Large RMW and wind

speeds ,33m s21
HNR1: 0000 UTC 2 Aug–0000 UTC 3 Aug

Ideal5: 0000 UTC 1 Sep–0600 UTC 3 Sep

II Rapid Intensification: Change in intensity

by 15m s21 in a 24 h period, RMW

decreasing

HNR1: 0000 UTC 3 Aug–0000 UTC 4 Aug

Ideal5: 0600 UTC 3 Sep–0000 UTC 5 Sep

III Recently Intensified: Slowing to steady HNR1: 0000 UTC 4 Aug–0000 UTC 6 Aug

intensification with intense peak winds

(. 55m s21) and RMW , 50 km,

after rapid intensification

Ideal5: 0000 UTC 5 Sep–0000 UTC 7 Sep

IV Steady state mature: Steady

intensification rate (65m s21) and

little change or slight increases in

RMW, winds .50m s21

HNR1: 0000 UTC 6 Aug–0000 UTC 8 Aug

Ideal5: 0000 UTC 7 Sep–0000 UTC 9 Sep

V Recurving and weakening: Continuous

intensity decrease with increasing

RMW, or track turning north to

northeast

HNR1: 0000 UTC 8 Aug–0000 UTC 11 Aug

Ideal5: 0000 UTC 9 Sep–0000 UTC 11 Sep

FIG. 9. (left) Box-and-whisker plots of the 1-min mean underestimate (%) are provided for single (red) and

rotated (blue) figure-four flight patterns. (right) As on the left, but for the five life cycle periods mentioned in the

text from HNR1 (Fig. 8) and Ideal5. The boxes include the interquartile range, and the dashed lines indicate the

maximum and minimum underestimates for each sample.
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difference increasing at the higher wind speeds. The

probabilities here confirm that standard SFMR peak

wind speeds do not fully capture the estimated 1-min

peak wind speed. Figure 14b shows the same histograms,

but with the correction factor applied to the peak SFMR

wind speeds. These histograms indicate that the SFMR is

closer to the peak overall wind speed from best track as

the differences range from 25 to 5kt for most intensity

bins. Negative values indicate that the peak estimate from

best track is low relative to the expected peak wind speed

determined from the correction factor. It may seem un-

expected that the highest probabilities of the adjusted

peak wind speed are very similar to the best track esti-

mates in Fig. 14b. There is an increased percentage of

cases in these wind speed bins with the corrected value

exceeding the best track, suggesting that the best track

estimate is too low. It is also important to indicate the best

track values used are a result of a blending of SFMR,

flight-level reduction, and dropsonde wind speeds, which

take into account some of the undersampling (Franklin

et al. 2003). The peak wind evaluation may be somewhat

affected by these other factors, but the main conclusion

here is that applying the correction factors in Table 4 to

SFMR peak wind speeds will promote improved repre-

sentation of the expected peak wind speed (full wind

field) in the best track and reduce the uncertainty from

undersampling.

6. Conclusions

Aircraft data collected in tropical storms and hurri-

canes are important for a variety of reasons, and as has

FIG. 10. As in Fig. 9, but for 10-min mean underestimates.

FIG. 11. As in Fig. 9, but for the 6-h mean wind speed.
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been reinforced in this study, they can significantly im-

prove the ability to make decisions about the strength

of a storm. Since its operational inception, the SFMR

has been a key part of the operational data suite, and it is

well known that SFMR cannot sample the actual peak

10-m wind speed. Within the SFMR OSSE framework

described, this study confirms that an underestimate in

the peak wind speed is expected but goes several steps

further in conveying when and by how much to apply a

correction. The two main goals of this study were to

quantify the undersampling by SFMR through the dif-

ferent TC life cycle stages and to develop a technique to

apply a correction to the TC intensity estimate based on

this knowledge. The results and discussion are therefore

summarized into several main conclusions:

d Using a WRF Model framework that is known to

produce realistic hurricane wind fields, it was deter-

mined that the simulated SFMR wind speed under-

sampling is highly correlated with the storm size and

intensity, where large tropical storms have the highest

underestimates (.14%), and small intense hurricanes

have the lowest underestimates (,4%). These un-

derestimates are also reflective of the different TC

development stages.

FIG. 12. Scatterplots of the 1-min, 10-m maximum wind speed underestimate (Vmax,10m; in percent) relative to the (a) 2-km RMW

(RMWz52km), (b) 10-m RMW (RMWz510m), (c) asymmetry ratio, (d) 2-km maximum tangential wind speed (Vt,z52km), (e) 10-m max-

imum tangential wind speed (Vt,z510m), and (f) 10-m maximum wind speed (Vz510m). The linear regression (solid) and 95% confidence

(dashed) lines are provided along with the correlation coefficient in each panel.

TABLE 4. Average percent underestimate against the 6-h maximum wind speed for storm intensity and size, which are defined by the

Saffir–Simpson hurricane wind scale and near-surface RMW speed, respectively. Storm strength is binned according to the peak SFMR-

like wind speeds. The values are provided for the single figure-four, single butterfly, repeated figure-four, and rotated figure-four patterns.

Size/category Tropical storm Categories 1–2 Categories 3–5

Small RMW , 15 n mi 10%, 14%, 10%, 9% 5%, 3%, 0%, 1% 2%, 1%, 0%, 0%

Medium 15 , RMW , 30 n mi 15%, 16%, 14%, 12% 9%, 9%, 8%, 8% 5%, 4%, 4%, 4%

Large RMW . 30 n mi 19%, 18%, 17%, 16% 11%, 10%, 9%, 9% 8%, 7%, 6%, 6%
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d Comparing different flight patterns indicates that in-

creasing the number of radial passes significantly

improves the SFMR peak wind underestimate on the

order of 2%–3%overall, and the increased sampling is

especially useful during TC intensification and TC

maturation, where underestimates improve by .4%.
d Analysis of real storm SFMR peak wind speeds and

best track intensities shows that not incorporating the

undersampling principles results in a 5–10-kt peak wind

underestimate, but applying the correction factor to the

SFMR winds improves this underestimate by at least

5kt atmost storm intensities. By first accounting for the

underestimate in the SFMR peak wind and using the

correction factor, best track estimates relying on SFMR

winds will be more representative of the peak wind

speed within the entire TC wind field.

FIG. 13. (left) The path of the NOAA P-3 flight from ;0900 to 1430 UTC 2 Sep 2010 into Hurricane Earl. The

light gray line indicates the best track positions, and the shaded contours indicate the lower fuselage C-band radar

reflectivity (dBZ) from the first center position determined during the mission (black circle; ;2203 UTC). (right)

The SFMRwind speed radial profiles for each pass, where the initial point is on the southwest side of the hurricane.

Negative radii indicate the inbound portions of the full radial pass.

FIG. 14. Joint histograms of the difference between the best track intensity and SFMR peak wind speed (DVmax)

are provided as a function of best track intensity for (a) original SFMR winds and (b) undersampling-corrected

SFMR winds. The differences are reported as probability within each best track intensity bin. The black line

indicates the peak probability for each best track bin, with error bars indicating the 95% confidence interval.
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The guidelines of the correction factor aremeant to serve

as reference for the tropical cyclone community when

assessing the intensity based on aircraft SFMRwind speeds.

The methodology and results in this study suggest one path

to obtain better estimates of storm intensity, but other data

sources could help in this regard.One topic of ongoingwork

is related to assessing intensity using scatterometer winds,

which would be most useful at tropical storm to minimal

hurricane wind speeds. The minimum central pressure is

another avenue for diagnosing intensity, and some analysis

of simulated dropsondes in the eyes of hurricanes indicates a

potential influence on representing the intensity. These two

topics will be discussed in future studies. The overarching

problem here still remains in that a point intensity estimate

does not convey storm structure characteristics. It could be

useful in the future to utilize alternative intensity metrics or

structural analyses, such as described by Vukicevic et al.

(2014) and Klotz and Jiang (2017), to account for the full

wind field variability and its relationship to TC strength.
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APPENDIX A

Model Simulation Details

The first two simulations in our set of five are hurricane

nature run 1 (Nolan et al. 2013) and hurricane nature run 2

(Nolan and Mattocks 2014). These are both regionally

downscaled simulations of hurricanes produced in the

Atlantic by the jointOSSE nature run (JONR;Andersson

and Masutani 2010). The two simulations use the same

grid spacing, vertical levels, and physical parameteri-

zations, and both simulate the complete evolution of

Atlantic hurricanes from tropical disturbance to recurv-

ing cyclone. HNR1 was produced with version 3.2.1 of

WRF, while HNR2 was produced with version 3.4.1.

HNR1 provides 13 days of model output from its 1-km

domain at 6-min intervals. Because of land interactions,

only about 36 h of HNR2 (saved at 5-min intervals) are

usable for this study. To increase sample size, the Hur-

ricane Bill (2009) simulation of Moon and Nolan (2015)

was also repeated, using WRF 3.4.1 and again using the

same resolution, model levels, and parameterizations.

This simulation provides 3.5 days of 1-km output at

5-min intervals. However, the structure and intensity of

Bill do not change much during the simulation.

To further expand the dataset, two entirely new sim-

ulations were produced using the idealized modeling

framework ofNolan (2011). Themodel domain is a large

zonally periodic channel, initialized with a purely zonal

flow that varies with height. The flow is balanced with

meridional gradients of pressure and temperature that

are computed from an iterative scheme [see the ap-

pendix of Nolan (2011)]. The SST, initial vortex, mean

flow, and wind shear were selected so as to produce two

different TCs: one that rapidly intensifies to a fairly

small category 5 hurricane (Ideal5) and one that de-

velops more slowly into a larger and more asymmetric

category 3 hurricane (Ideal3).

The Ideal5 and Ideal3 simulations use an outer do-

main with 240 3 180 grid points and vortex-following

nested grids of 240 3 180, 180 3 180, 360 3 360, and

480 3 480 grid points, with 27-, 9-, 3-, and 1-km grid

spacings, respectively. Both use 60 vertical levels be-

tween the surface and 20-km height, with the same

vertical grid spacings as in the hurricane nature runs [see

Fig. 2 of Nolan et al. (2013)]. The physical parameteri-

zations are also the same, including the use of the one-

dimensionalmixed-layer cooling scheme of Pollard et al.

(1972) available with WRF 3.4.1. All simulations used

time steps of 60, 30, 10, and 5 s on their 27-, 9-, 3-, and

1-km grids, respectively, and the important properties

of the five simulations are summarized in Table A1.

Ideal5 is initialized with 5ms21 of easterly flow from

the surface up to 850 hPa, then transitioning smoothly to

0m s21 between 850 and 200 hPa (i.e., 5m s21 of westerly

wind shear). The Coriolis parameter is f 5 3.77 3
1025 s21 (corresponding to 158N latitude, although f

does not vary across the channel). The environmental

sounding at the central latitude of the domain is the

Dunion (2011) moist tropical sounding; this sounding

varies meridionally due to the geostrophic wind balance

of the shear, but the specific humidity is recomputed to

keep the relative humidity profile constant. The SST is

set to 298C along the centerline of the domain, but also

varies meridionally. This meridional variation matches

the temperature variation that exists at 5-km altitude

due to the thermal wind balance. Nolan (2011) used this

modification to suppress excessive convection in the

northern part of the channel, where the temperature

difference between the SST and the midtroposphere
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would otherwise be substantially increased. The SST

variation is approximately linear, ranging from 32.58 to
25.58C from the south to north edges of the channel. An

initial vortex, along with the pressure and temperature

anomalies required by gradient wind balance, is em-

bedded into the flow at the eastern end of the domain.

For Ideal5, the initial vortex has a maximum tangential

wind of 10ms21 at a radius of 108 km and a height of

3.7 km. The radial wind profile is a modified Rankine

vortex with decay parameter a 5 1/3. The initial verti-

cal structure of the wind field uses the same analytic

function as the midlevel vortices in Eq. (4) of Nolan

(2007). Following Nolan and McGauley (2012; see their

Fig. 1.6), the midlevel humidity across the domain is also

reduced by 10%, which reduces rainband activity in the

development stage and allows the vortex to intensify

more rapidly and to a smaller size.

The Ideal3 simulation uses a central SST of 278C,
5ms21 of easterly flow, and 10ms21 ofwesterly shear, and

it also uses the Dunion (2011) moist tropical sounding.

Specific humidity is recomputed as above, but it is not

reduced by 10% in the midlevels. The Coriolis parameter

is set to f 5 5.0 3 1025 s21 (corresponding to 208N). The

initial vortex has its maximum tangential wind of 15ms21

at radius 162km, again using a modified Rankine vortex

with a 5 1/3, but with the wind maximized at a height of

1.5km using the vertical structure formula of Stern and

Nolan [2011; see their Eq. (4.2)].

As the Ideal5 and Ideal3 simulations evolve, the wind,

temperature, andmoisture fields on the outer domain are

relaxed back to their initial values with a 24-h relaxation

time scale. This relaxation does not apply on the nested

grids. The relaxation keeps the environmental sounding

and wind shear profile around the cyclone roughly con-

stant as the storm develops, but it does not interfere with

the development and evolution of the storms.

Ideal5 and Ideal3 are both integrated for 10 days with

surface fields on the 1-km domain saved every 5min. In

Ideal5, the storm develops quickly and begins RI at the

start of day 3, with peak surface wind speed exceeding

70ms21 from days 5 through 8. The cyclone initially

contracts to an RMW of about 18 km and then slowly

increases in size. In Ideal3, the development is slower

and more episodic, with the surface wind speed first

exceeding 50ms21 on day 6. For the first 7 days, the

storm is much larger and much more asymmetric than

Ideal5. After it becomes a hurricane, the RMW is 40km,

but later it expands to 70km with an eyewall re-

placement cycle. After this event, the storm then in-

tensifies further, and the RMW contracts to 30km at the

end of the simulation.

APPENDIX B

Sensitivity Assessment of Model Wind Fields

To assess whether or not the spatial variability of the

simulated wind fields is strongly dependent on the hor-

izontal and vertical diffusion in the WRF simulations,

Ideal5 and Ideal3 simulations were repeated with two

modifications. In the first pair of modified simulations,

the horizontal diffusion was increased by a factor of 4

everywhere (hereafter, Ideal5-KH4 and Ideal3-KH4).

In the second pair, the Yonsei University boundary

TABLE A1. The basic properties related to domain, grid spacing, output frequency, vortex type, and forcing mechanism are summarized

for the five WRF hurricane simulations used in this study.

Simulation

name Domain Grid sizes

Output frequency

and duration

Initial

vortex Forcing

HNR1 Tropical Atlantic 27 km: 240 3 160 6min for 13 days Realistic disturbance

from JONR

JONR boundary conditions

and large-scale relaxation9 km: 120 3 120

3 km: 240 3 240

1 km: 480 3 480

HNR2 Caribbean and

Gulf of Mexico

9 km: 480 3 360 5min for 8 days Realistic disturbance

from JONR

JONR boundary conditions

and large-scale relaxation3 km: 360 3 360

1 km: 480 3 480

Bill2.0 West Atlantic 9 km: 384 3 336 5min for 3.5 days GFDL initialization of

Hurricane Bill

GFDL analysis boundary

conditions3 km: 360 3 360

1 km: 480 3 480

Ideal5 Zonal channel with

f 5 3.77 3 1025 s21
27 km: 240 3 180 5min for 10 days 10m s21 midlevel

vortex

Large-scale relaxation to

initial mean flow and shear9 km: 180 3 180

3 km: 360 3 360

1 km: 480 3 480

Ideal3 Zonal channel with

f 5 5.0 3 1025 s21
27 km: 240 3 180 5min for 10 days 15m s21 low-level

vortex

Large-scale relaxation to

initial mean flow and shear9 km: 180 3 180

3 km: 360 3 360

1 km: 480 3 480
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layer scheme (YSU; Hong et al. 2006) was replaced with

the Mellor–Yamada–Janjić (MYJ; Janjić 1990, 1994)

scheme (Ideal5-MYJ and Ideal3-MYJ). However, fol-

lowing the procedure of Nolan et al. (2009a,b), the wind

speed–dependent formula for the surface roughness

length over the ocean was replaced by the same formula

as used in the YSU scheme, in which the surface

roughness levels off to a constant value for wind speeds

greater than 26ms21 (whereas the default formula

continues to increase). For consistency with the hurri-

cane nature run simulations, the wind speed formula

from WRF version 3.1.1 was used.

These modifications caused minor changes to the evolu-

tionsof the simulatedhurricanes. For both Ideal5 and Ideal3,

increasinghorizontal diffusion reduced thepeakwind speeds

and resulted in slightly larger eyewalls in the mature stage,

but the timing of the intensification and the overall structural

evolution was very similar. With the MYJ scheme, rapid

intensification was delayed by about 24h in both Ideal5 and

Ideal3, but in both cases, the stormultimately reachednearly

identical intensity. TheRMWwas generally 5–10km smaller

for the storms using MYJ (not shown).

Figure B1 shows snapshots of the surface wind field

from the original and modified simulations. Ideal3 is

used to show the wind field in a broad tropical storm,

while Ideal5 is used to show the wind field of an intense

hurricane. In each case, the output times have been se-

lected subjectively so that the wind fields have similar

structures. The tropical storm phase is illustrated in the

top row. While a more quantitative analysis remains

for future work, there do not appear to be significant

differences in the three wind fields. At this stage, the

eyewall has not yet formed, and the strongest surface

winds are associated with bands of convection to the

northeast and southeast of the center and in a broad area

of convective cells to the north. Similar structures are

apparent, with roughly the same length scales, in all

three plots.

The intense hurricane phase is illustrated in the sec-

ond row. The wind fields of all three simulations show

the outward angled bands discussed in the text. How-

ever, the peak winds in all three storms are associated

with more coherent features in the eyewall, and it is the

spatial variability of these features that leads to under-

sampling by aircraft observations. Therefore, the wind

structures outside the eyewall, which may or may not be

realistic, do not contribute to the undersampling (which,

in fact, is very small for these storms; see Table 4).

FIG. B1. Surface wind fields from the original and modified Ideal3 and Ideal5 simulations. (top) The wind field during the strong tropical

storm stage of Ideal3 for the original, the increased horizontal diffusivity, and theMYJ scheme, respectively, at times when the wind fields were

qualitatively similar. (bottom) The intense hurricane stage from Ideal5. The color scales and domain sizes are different for the two cases.
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To summarize, during the early stages, from developing

tropical storm to category 1 hurricane, it is the convective

cells embedded in rainbands and in the developing eyewall

that produce localized windmaxima that have only a small

chance of being intercepted by the aircraft. These wind

structures do not appear to be strongly dependent on the

horizontal and vertical diffusion. In the mature stage,

undersampling is due to the wind variability in the eyewall,

which is believed to be caused by dynamical instabilities

that can be resolved by the model, but do not show sig-

nificant differences in the modified simulations.
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